MECHANICS (C) UNIT 3

TEST PAPER 3

Take $g = 9.8 \text{ ms}^{-2}$ and give all answers correct to 3 significant figures where necessary.

1. The diagram shows a simple pendulum of length l m at the instant when its angular displacement from the equilibrium position OP is θ radians.

The equation of motion of the pendulum is given by $\frac{d^2\theta}{dt^2} = -\frac{g}{l}\sin\theta$. Given that θ is small,

(i) show that the motion is simple harmonic.

[2]

(ii) Write down the period of the motion.

[2]

2. The diagram shows two smooth, perfectly elastic spheres A and B, of masses m and M respectively. Initially B is at rest and A is moving with speed u in a direction making an angle θ with the line of centres OO'. The spheres collide, and after the impact, A moves perpendicular to OO' and B moves parallel to OO'.

(i) Find, in terms of u and θ , the speeds of A and B after the impact.

[3]

(ii) Show that M = m.

[4]

3. A hailstone falling vertically with speed $0.2~{\rm ms}^{-1}$ strikes the windscreen of a car and rebounds horizontally with speed $v~{\rm ms}^{-1}$ as shown. Modelling the hailstone as a particle and the windscreen as a smooth plane inclined at an angle α to the horizontal,

(i) show that $v = 0.2 \tan \alpha$.

[3]

Given also that $\alpha = \frac{3}{4}$,

(ii) find the coefficient of restitution between the hailstone and the windscreen.

[5]

- 4. A light elastic string, of natural length 0.8 m, has one end fastened to a fixed point O. The other end of the string is attached to a particle P of mass 0.5 kg. When P hangs in equilibrium, the length of the string is 1.5 m.
 - (i) Calculate the modulus of elasticity of the string.

[3]

P is displaced to a point 0.5 m vertically below its equilibrium position and released from rest.

- (ii) Show that the subsequent motion of P is simple harmonic, with period 1.68 s. [4]
- (iii) Calculate the maximum speed of P during its motion.

[2]

MECHANICS 3 (C) TEST PAPER 3 Page 2

5. A particle P of mass 0.4 kg hangs by a light, inextensible string of length 20 cm whose other end is attached to a fixed point O. It is given a horizontal velocity of 1.4 ms⁻¹ so that it begins to move in a vertical circle. If, in the ensuing motion, the string makes an angle of θ with the downward vertical through O, show that

(i)
$$\theta$$
 cannot exceed 60°, [6]

(ii) the tension, T N, in the string is given by
$$T = 3.92(3 \cos \theta - 1)$$
. [4]

- 6. A particle P of mass m kg moves vertically upwards under gravity, starting from ground level. It is acted on by a resistive force of magnitude m f(x) N, where f(x) is a function of the height x m of P above the ground. When P is at this height, its upward speed v ms⁻¹ is given by $v^2 = 2e^{-2gx} 1$.
 - (i) Write down a differential equation for the motion of P and hence determine f(x) in terms of g and x.[5]
 - (ii) Show that the greatest height reached by P above the ground is $\frac{1}{2g} \ln 2$ m. [2]

Given that the work, in J, done by P against the resisting force as it moves from ground level to a point H m above the ground is equal to $\int_0^H m f(x) dx$,

- (iii) show that the total work done by P against the resistance during its upward motion is $\frac{1}{2} m(1 \ln 2) J$. [3]
- 7. Two identical uniform rods AB and BC, each of weight mg, are freely jointed at B. The end A is smoothly hinged to a fixed point. The system is kept in equilibrium in a vertical plane by a horizontal force of magnitude P applied at C, and the rods then make angles 45° and θ° with the horizontal as shown.

- (i) Write down the magnitude of the vertical component of the force acting on AB at A, and show that the horizontal component of this force has magnitude $\frac{3mg}{2}$. [5]
- (ii) Hence state, with reasons, the magnitudes of the horizontal and vertical components of the force acting on BC at B.
- (iii) Explain why $P = \frac{3mg}{2}$. [1]
- (iv) Show that $\tan \theta = \frac{1}{3}$. [3]

MECHANICS 3 (C) TEST PAPER 3: ANSWERS AND MARK SCHEME

1. (i)
$$\theta$$
 small, so $\sin \theta \approx \theta$ Hence $\frac{d^2\theta}{dt^2} \approx -\frac{g}{l}\theta$; acc. proportional to M1 A1 (angular) displacement, so SHM. (ii) Period = $2\pi/\sqrt{(g/l)} = 2\pi\sqrt{\frac{l}{g}}$ M1 A1

2. (i) Cons. of mom.
$$\perp OO'$$
: $v_A = u \sin \theta$ Restitution : $v_B = u \cos \theta$ B1 M1 A1

(ii) Cons. of momentum // OO':
$$Mv_B = mu \cos \theta$$
 $v_B = \frac{mu}{M} \cos \theta$ M1 A1
Now $e = 1$, so $\frac{mu}{M} = m$ M = m M1 A1

3. (i) Mom. // to plane :
$$m(0.2 \sin \alpha) = m(v \cos \alpha)$$
 $v = 0.2 \tan \alpha$ M1 A1 A1

(ii) Restitution
$$\perp$$
 to plane : $e(0.2 \cos \alpha) = v \sin \alpha$ M1 A1
$$e = \frac{0.2 \tan \alpha \sin \alpha}{0.2 \cos \alpha} = \tan^2 \alpha = \frac{9}{16}$$
 M1 A1 A1

4. (i)
$$mg = \frac{\lambda}{0.8} \times 0.7 = 0.5 \times 9.8$$
 $\lambda = 4.9 \times \frac{0.8}{0.7} = 5.6 \text{ N}$ M1 A1 A1
 (ii) $(0.5 \times 9.8) - \frac{5.6}{0.8} (0.7 + x) = 0.5 x$ $4.9 - 4.9 - 7x = 0.5 x$ M1 A1

$$x = -14x$$
, of form $x = n^2x$ with $n^2 = 14$, so simple harmonic A1
Period = $2\pi/\sqrt{14} = 1.68$ s A1

(iii) Maximum speed =
$$an = 0.5 \sqrt{14} = 1.87 \text{ ms}^{-1}$$
 M1 A1

5. (i) Energy:
$$\frac{1}{2} (0.4)(1.4)^2 = 0.4 \times 9.8 \times 0.2(1 - \cos \theta) + \frac{1}{2} \times 0.4v^2$$
 M1 A1 A1 $v^2 = 1.96 - 3.92(1 - \cos \theta) = 3.92 \cos \theta - 1.96$ A1 $v^2 \ge 0$, so $\cos \theta \ge \frac{1}{2}$ $\theta \le 60^\circ$ M1 A1 (ii) $T - mg \cos \theta = \frac{mv^2}{r}$ $T = 0.4 \times 9.8 \times \cos \theta + 2(3.92 \cos \theta - 1.96)$ B1 M1 A1

(ii)
$$T - mg \cos \theta = \frac{mv^2}{r}$$
 $T = 0.4 \times 9.8 \times \cos \theta + 2(3.92 \cos \theta - 1.96)$ B1 M1 A1
 $T = 3.92(3 \cos \theta - 1)$ A1

6. (i)
$$mv \frac{dv}{dx} = -(mg + mf(x))$$
 $v \frac{dv}{dx} = -g - f(x)$ M1 A1
 $v^2 = 2e^{-2gx} - 1$, so $2v \frac{dv}{dx} = -4ge^{-2gx}$ $-2ge^{-2gx} = -g - f(x)$ M1 A1
 $f(x) = g(2e^{-2gx} - 1)$ A1

(ii)
$$v = 0$$
 when $2e^{-2gx} = 1$ $x = \frac{1}{2g} \ln 2$ M1 A1

(iii) W.D. =
$$m[-e^{-2gx} - gx]_0^{(\ln 2)/2g} = m(-e^{-\ln 2} - \frac{1}{2}\ln 2 + 1) = \frac{1}{2}m(1 - \ln 2)$$
 M1 A1 A1

7. (i) Vertical comp.
$$Y = 2mg$$
 Let $AB = 2l$ B1
$$M(B) \text{ for } AB: X \frac{2l}{\sqrt{2}} + mg \frac{l}{\sqrt{2}} = 2mg \frac{2l}{\sqrt{2}} \qquad X = \frac{3}{2} mg \qquad \text{M1 A1 A1 A1}$$

(ii) Separating rods at
$$B$$
, let horizontal and vertical components of M1 contact force be X_1 and Y_1 Then AB (hor.) gives $X_1 = X = \frac{3}{2} mg$ A1 and BC (vert.) gives $Y_1 = mg$ A1

(iii) Horizontal forces on
$$BC$$
 give $P = X_1 = \frac{3}{2} mg$

(iv) M(B) for
$$BC : \frac{3}{2} mg(2l \sin \theta) = mg (l \cos \theta)$$
 M1 A1
 $3 \sin \theta = \cos \theta$ $\tan \theta = \frac{1}{3}$ A1

A1